WATER QUALITY DATA PADRE ISLES AND CONTIGUOUS WATERS

July 10-11, 2023 July 17-18, 2023

ATTN: PETER SCHAEFER, STDS. IMPLEMENTATION TEAM
MC 150
DEPARTMENT OF THE ARMY PERMIT 9009
401CERTS@tceq.texas.gov

RUSSELL J. MIGET PhD 6010 IDYLWOOD DRIVE CORPUS CHRISTI, TX 78412 (361) 947-3288 russell6104@att.net

INTRODUCTION

The following are water quality reports for the canals and contiguous waters of Padre Isles, Corpus Christi, Texas, which fulfill the monitoring requirements as set forth in a letter from TCEQ (Sidne Tiemann) to the USACE (Mark King) dated October 12, 1994. All temperature measurements are in degrees centigrade. All dissolved oxygen measurements are in milligrams per liter.

METEOROLOGICAL CONDITIONS

July 10, 2023. Day. Clear. Wind SSE 15 mph. 33.3 C.

July 11, 2023. Night. Wind SSE 10 mph. 29.1 C.

July 17, 2023. Day. Clear. Wind SE 15 mph. 34.3 C.

July 18, 2023. Night. Wind SE 5 mph. 28.2 C.

Date	Time	Station	Temp. C	D.O. mg/l
7/10/2023	1930	1	32.8	7.4
	1630	2	31.7	3.9
	1940	3	34.7	8.2
	1800	4	33.1	7.6
	1640	5	32.7	5.7
	1700	6	32.7	9.6
	1720	7	32.5	7.6
	1820	8	33.1	8.9
	1840	9	32	7.2
	1850	10	33.5	8.6
	1900	11	32.5	7.3
	1915	12	31.5	7
	1750	13	32.2	6.8
	1745	21	32.5	7.2
	1740	23	32.4	7

All measurements taken one foot below the surface.

Date	Time	Station	Temp. C	D.O. mg/l
7/11/2023	650	1	29.2	5.3
	400	2	30.8	2.3
	700	3	30.4	4.8
	520	4	31.5	6.1
	410	5	31.9	4.2
	425	6	31.5	6
	445	7	31.8	5
	540	8	29.8	4.3
	600	9	31.4	5.9
	610	10	29.9	4.6
	620	11	28.7	6.2
	635	12	30.9	4.8
	510	13	31.1	5.4
	505	21	31	5.3
	500	23	31.4	5.7

All measurements taken one foot below the surface

NUTRIENTS

Water samples for nutrient analyses were collected one foot below the surface (S) and one foot abovethe bottom (B) at stations 1,5,6,8,9,10 and 11. Values are reported as milligrams per liter (mg/l or PPM) of the element in the compound. * The lower limit of detection is 0.001 mg/l for nitrate (NO₃-N) and nitrite (NO₂-N) nitrogen, and 0.016 mg/l for phosphate phosphorus (PO₄-P). ND means not detectable.

* Strickland and Parsons (1968). A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada. Ottawa.

Date	Time	Station	Depth(ft)		NO ₃	-N	NO ₂	-N	PO ₄	-P
	1930	1B		13		0.003		0.001	ND	
		1 S				0.008		0.003	ND	
	1640	5B		11		0.003	ND			0.02
		5 S				0.004		0.002		0.018
	1700	6B		14		0.003		0.005	ND	
		6S				0.001		0.003	ND	
	1820	8B		12	ND		ND		ND	
		8S			ND		ND		ND	
	1840	9B		13		0.003	ND		ND	
		9S				0.005	ND		ND	
	1850	10B		14	ND		ND		ND	
		105			ND		ND		ND	
	1900	11B		13	ND		ND		ND	
		11S			ND		ND		ND	

Date	Time	Station	Temp C	D.O.mg/l
7/17/2023	1815	21	32.8	5.8
	1825	23	32.7	5.6
7/18/2023	525	21	31.2	4.2
	535	23	31.6	4.3

